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Motivation

• Q: Can we have a data-dependent, non-parametric, easy-to-implement UCB
algorithm?

A: Yes, by multiplier bootstrap!

• Q: Can multiplier bootstrapped confidence bound ensure the non-asymptotic va-
lidity?

A: Yes, by adding a second-order correction!

• Warning! Naive bootstrapped confidence bound → linear regret!

Bandits and Upper Confidence Bound

• Multi-armed bandit as a showcase.

Pull an arm It ∈ [K] and observes its reward yIt with an unknown mean µIt.

REGRET(T ) = Tµ∗ − E
[ T∑
t=1

yt

]
.

• Upper confidence bound.

An upper confidence bound G(yn, 1− α) for the true mean µ, of the form

G(yn, 1− α) =
{
x ∈ R, x− ȳn ≤ hα(yn)

}
,

where ȳn is the empirical mean, α ∈ (0, 1) is the confidence level, and hα : Rn →
R+ is a threshold that could be either data-dependent (bootstrapped-based) or data-
independent (concentration-based).

• Non-asymptotics.

We define G(yn, 1−α) as a non-asymptotic upper confidence bound if for any sam-
ple size n ≥ 1, the following inequality holds

P
(
µ ∈ G(yn, 1− α)

)
≥ 1− α.

Multiplier Bootstrap

• Mean estimation.

Multiplier bootstrapped mean estimator:

1

n

n∑
i=1

wi(yi − ȳn) =
1

n

n∑
i=1

(wi − w̄n)yi
d
≈ ȳn − µ︸ ︷︷ ︸

target

.

• Bootstrap weights.

{wi}ni=1 are some random variables independent of yn. Some classical weights are as
follows:

– Efron’s bootstrap weights. (w1, . . . , wn) is a multinomial random vector with pa-
rameters (n;n−1, . . . , n−1).

– Gaussian weights. wi’s are i.i.d standard Gaussian random variables.

– Rademacher weights. wi’s are i.i.d Rademacher variables.

Confidence Bound Based on Multiplier Bootstrap

• Naive Bootstrap.

Approximate (1−α)-quantile of ȳn−µ by (1−α)-quantile of n−1
∑n

i=1wi(yi− ȳn).
The multiplier bootstrapped quantile is defined as,

qα(yn − ȳn) := inf
{
x ∈ R|P

(1

n

n∑
i=1

wi(yi − ȳn) > x
)
≤ α

}
. (1)

Question: if qα(yn − ȳn) is a valid threshold for any sample size n ≥ 1? NO!

• Second-order Correction.

Classical statistical theories ⇒ valid asymptotically (n→∞).

Message: Valid non-asymptotically must pay the cost of a second-order cor-
rection.

• Inform Theorem.

Require: symmetric random variables and Rademacher weights.

For two arbitrary parameters α, δ ∈ (0, 1), the following inequality holds for any
sample size n ≥ 1,

Py

(
ȳn − µ > qα(1−δ)(yn − ȳn) +

√
log(2/αδ)

n
ϕ(yn)︸ ︷︷ ︸

bootstrapped threshold

)
≤ 2α, (2)

where ϕ(yn) is a non-negative function satisfying Py(|ȳn − µ| ≥ ϕ(yn)) ≤ α.

Special case for sub-Gaussian.

bootstrapped threshold = qα/4(yn − ȳn)︸ ︷︷ ︸
main term

+
2 log(8/α)

n︸ ︷︷ ︸
second order correction

.

Comparison between Confidence Bounds

Figure 2: 95% confidence bound of the sample mean.

• Bootstrapped threshold without correction is not valid when sample size is small.

• Concentration-based threshold is too loose.

Regret Analysis

Definition 1 (Sub-Weibull Distribution). We define y as a sub-Weibull random vari-
able if it has a bounded ψβ-norm. The ψβ-norm of y for any β > 0 is defined as
‖y‖ψβ := inf{C ∈ (0,∞) : E[exp(|y|β/Cβ)] ≤ 2}.
1. Weaker assumption than sub-Gaussian or sub-exponential!
2. β = 2: sub-Gaussian; β = 1: sub-exponential
3. Novel concentration inequality derived.

Theorem 0.1. Consider a stochastic K-armed symmetric β-sub-Weibull bandit and let
the confidence level α = 1/(t log2 t).

• Problem-dependent Regret

R(T ) .
∑
k:∆k>0

σ2log T

∆k
+ σK(log T )1/β +

K∑
k=2

∆k.

• Problem-independent Regret If the round T ≥ 22/β−3K(log T )2/β−1,

R(T ) . σ
√
TK log T . (3)

Experiments

Figure 3: multi-armed bandit and linear bandit (without guarantee).

• TSL: Thompson sampling for linear bandit

• OFUL: optimism in the face of uncertainty linear bandit algorithm

Next?

• Relax symmetric assumption? Sharpen second-order correction term?

• Regret analysis for bootstrapped LinUCB? Bootstrap log-likelihood function...

• Extension to tabular MDP?


