PURDUE

Botao Hao,

Motivation

e Q: Can we have a data-dependent, non-parametric, easy-to-implement UCB
algorithm?
A: Yes, by multiplier bootstrap!

e Q: Can multiplier bootstrapped confidence bound ensure the non-asymptotic va-
lidity?
A: Yes, by adding a second-order correction!

e \Warning! Naive bootstrapped confidence bound — linear regret!

Bandits and Upper Confidence Bound

e Multi-armed bandit as a showcase.

Pull an arm I; € [ K] and observes its reward y; with an unknown mean py,.
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t=1
e Upper confidence bound.
An upper confidence bound G(y,,, 1 — «) for the true mean p, of the form

Q(yn, 1 — O‘) — {Q? e R,z —y, < ha(yn)}a

where g, is the empirical mean, o € (0, 1) is the confidence level, and h, : R" —
R™ is a threshold that could be either data-dependent (bootstrapped-based) or data-
independent (concentration-based).

e Non-asymptotics.

We define G(y,, 1 — a) as a non-asymptotic upper confidence bound if for any sam-
ple size n > 1, the following inequality holds

IP’(,LL € G(yn, 1 — oz)) >1—a.
Multiplier Bootstrap

e Mean estimation.
Multiplier bootstrapped mean estimator:
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e Bootstrap weights.
{w;}"_, are some random variables independent of y,,. Some classical weights are as
follows:
— Efron’s bootstrap weights. (w1, ..., w,) is a multinomial random vector with pa-
rameters (n;n %, ..., n"1).
— Gaussian weights. w;'s are i.i.d standard Gaussian random variables.
— Rademacher weights. w;'s are i.i.d Rademacher variables.
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Confidence Bound Based on Multiplier Bootstrap

e Naive Bootstrap.
Approximate (1 —«)-quantile of 7, — 1 by (1 —«)-quantile of ="' > w;(y; — 7,).
The multiplier bootstrapped quantile is defined as,

o) =t {z e RE(LS wy g0 >x) <ol

Question: if g.(y, — ¥,) is a valid threshold for any sample size n > 17 NO!

e Second-order Correction.
Classical statistical theories = valid asymptotically (n — o).
Message: Valid non-asymptotically must pay the cost of a second-order cor-
rection.
¢ Inform Theorem.
Require: symmetric random variables and Rademacher weights.

For two arbitrary parameters a,0 € (0,1), the following inequality holds for any
sample size n > 1,
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bootstrapped threshold

s&(yn)) < 2a, (2)

where ©(y,,) is a non-negative function satisfying P, (|y, — 1| > ©(yn)) < a.

Special case for sub-Gaussian.
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Comparison between Confidence Bounds
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Figure 2: 95% confidence bound of the sample mean.

¢ Bootstrapped threshold without correction is not valid when sample size is small.

e Concentration-based threshold is too loose.
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Regret Analysis

Definition 1 (Sub-Weibull Distribution). We define y as a sub-Weibull random vari-

able if it has a bounded vg-norm. The 1g-norm of y for any 5 > 0 is defined as
[yl = int{C € (0,00) : Elexp(|y|”/C")] < 2}.

1. Weaker assumption than sub-Gaussian or sub-exponential!

2. 0 = 2: sub-Gaussian; 5 = 1: sub-exponential

3. Novel concentration inequality derived.

Theorem 0.1. Consider a stochastic K-armed symmetric 3-sub-Weibull bandit and let

the confidence level o = 1/(tlog”t).
e Problem-dependent Regret
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e Problem-independent Regret If the round T > 2°/"=3K (log T)*#~1,

R(T) < ov/TKlogT. (3)
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Figure 3: multi-armed bandit and linear bandit (without guarantee).

e TSL: Thompson sampling for linear bandit

e OFUL: optimism in the face of uncertainty linear bandit algorithm
Next?

e Relax symmetric assumption? Sharpen second-order correction term?
e Regret analysis for bootstrapped LinUCB? Bootstrap log-likelihood function...

e Extension to tabular MDP?



