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Tensor: Multi-dimensional Array
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Tensor Data Example
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Motivation: Compressed Image Transmission
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Motivation: Interaction Effect Model

source: Contraceptive Method Choice dataset from UCI
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Motivation: Interaction Effect Model

Botao Hao@Purdue sparse and low-rank tensor recovery



Sparse and Low-Rank Tensor Recovery
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Noisy Cubic Sketching Model

Observe {yi,Xi} from noisy cubic sketching model,

yi︸︷︷︸
scalar

= 〈T ∗,Xi〉︸ ︷︷ ︸
tensor inner product

+ εi︸︷︷︸
noise

, i = 1, . . . , n.

Goal: Recover unknown third-order tensor parameter T ∗.
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Key Assumptions on Tensor Parameter

When T ∗ ∈ Rp×p×p is a symmetric tensor...
1 CANDECOMP/PARAFAC(CP) low-rank:

2 Sparse components: ‖β∗
k‖0 ≤ s for k ∈ [K].

The cubic sketching tensor Xi for symmetric case is
Xi = xi ◦xi ◦xi, where {xi}ni=1 are Gaussian random vectors.
β∗k and β∗k′ are not orthogonal. Different from eigenvalue
decomposition in matrix case.
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Key Assumptions on Tensor Parameter

When T ∗ ∈ Rp1×p2×p3 is a non-symmetric tensor...
1 CANDECOMP/PARAFAC(CP) low-rank:

2 Sparse components: ‖β∗
1k‖0 ≤ s1, ‖β∗

2k‖0 ≤ s2, ‖β∗
3k‖0 ≤ s3

for k ∈ [K].
The cubic sketching tensor Xi for non-symmetric case is
Xi = ui ◦ vi ◦wi, where {ui,vi,wi}ni=1 are Gaussian random
vectors.
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Reduced Symmetric Tensor Recovery Model

For symmetric tensor recovery model

yi = 〈
K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k,xi ◦ xi ◦ xi〉+ εi =

K∑
k=1

η∗k (x>i β∗k)3︸ ︷︷ ︸
non-linear

+εi

Connect with interaction effect model.

New Goal: Recover {η∗k,β∗k}Kk=1

Botao Hao@Purdue sparse and low-rank tensor recovery



Reduced Non-symmetric Tensor Recovery Model

For non-symmetric tensor recovery model

yi = 〈
K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k,ui ◦ vi ◦wi〉+ εi

=
K∑
k=1

η∗k (u>i β∗1k)(v>i β∗2k)(w>i β∗3k)︸ ︷︷ ︸
non-linear

+εi

Connect with compressed image transmission model.

New Goal: Recover {η∗k,β∗1k,β∗2k,β∗3k}Kk=1.
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Empirical Risk Minimization

Consider Empirical Risk Minimization

T̂ = argmin
{ηk,βk}

n∑
i=1

(yi −
K∑
k=1

ηk(x>i βk)3)2

︸ ︷︷ ︸
L1(ηk,βk)

T̂ = argmin
{ηk,βik}

n∑
i=1

(yi −
K∑
k=1

ηk(u>i β1k)(v>i β2k)(w>i β3k)︸ ︷︷ ︸
L2(ηk,βik)

)2

Difficulties: Non-convex optimization! Non-convexity from
cube structure or tri-convexity.
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Our Contributions

1 Efficient two-stage implementation to non-convex optimization
problem.

2 Non-asymptotic analysis. Provide optimal estimation rate.
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Two-stage Implementation

Botao Hao@Purdue sparse and low-rank tensor recovery



Main Algorithm (Symmetric Recovery)
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Initial Step: Construct unbiased estimator

Construct an unbiased empirical moment based tensor
Ts(yi,Xi) ∈ Rp×p×p as following

Ts := 1
6
[ 1
n

n∑
i=1

yixi ◦ xi ◦ xi − U
]

︸ ︷︷ ︸
only depends on observations.

where the bias term
U =

∑p
j=1

(
m1 ◦ ej ◦ ej + ej ◦m1 ◦ ej + ej ◦ ej ◦m1

)
, and

m1 = 1
n

∑n
i=1 yixi. Here {ej}pj=1 are the basis vectors in Rp.

Botao Hao@Purdue sparse and low-rank tensor recovery



Initial Step: Construct unbiased estimator

Intuition: E[Ts] = T ∗.

Observation Ts.
Noise E = Ts − E(Ts): approximation error.

Decompose Ts to obtain {η(0)
k ,β

(0)
k } through sparse tensor

decomposition. See next slide for details.
Far from the optimal estimation, but good enough as a warm
start.
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Initial Step: Sparse Tensor Decomposition

⇒ Generate L staring points {βstart
l }Ll=1.

⇒ For each starting point, compute a non-sparse component of
moment-based Ts via symmetric tensor power update:

β̃
(t+1)
l =

Ts ×2 β
(t)
l ×3 β

(t)
l

1

‖Ts ×2 β
(t)
l ×3 β

(t)
l ‖2

,

⇒ Get a sparse solution β(t+1)
l via thresholding or truncation.

⇒ Cluster L sets of single component {β(T )
l ,β

(T )
l ,β

(T )
l }Ll=1 into

K clusters to obtain a rank-K decomposition
{η(0)
k ,β

(0)
k ,β

(0)
k ,β

(0)
k }Kk=1.

Different from matrix SVD due to non-orthogonality.

1For Ts ∈ Rp×p×p and x ∈ Rp, define Ts ×2 x×3 x :=
∑

j,l
xjxl[T ]:,j,l
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Gradient Update: Thresholded Gradient Decent

⇒ Input initial estimator {η(0)
k ,β

(0)
k }Kk=1.

⇒ In each iteration step, update {βk}Kk=1 as

β̃
(t+1)
k = β

(t)
k −

µt
φ
∇βk
L1(η(0)

k ,β
(t)
k )

where φ = 1
n

∑n
i=1 y

2
i , µt is the step size.

⇒ Sparsify current update by thresholding β(t+1)
k = ϕρ(β̃(t+1)

k ).

⇒ Normalize final update β(T )
k = β

(T )
k

‖β(T )
k
‖2

and update the weight

η̂k = η
(0)
k × ‖β

(T )
k ‖32.

1Alternating update for non-symmetric tensor recovery.
Botao Hao@Purdue sparse and low-rank tensor recovery



Non-asymptotic Analysis
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Non-asymptotic Upper Bound

Theorem
Suppose some regularity conditions for the true tensor parameter
hold. Assume n ≥ C0s

3/2 log p for some large constant C0. Denote
Z

(t)
k =

∑K
k=1 ‖ 3

√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k‖22 For any t = 0, 1, 2, . . ., the

factor-wise estimator satisfies

Z
(t+1)
k ≤ κtZ

(t)
k︸ ︷︷ ︸

computational error

+ C1η
∗−4

3
min

16
σ2s log p

n︸ ︷︷ ︸
statistical error

,

with high probability, where κ is the contraction parameter between
0 and 1, η∗min = mink{η∗k}, σ is the noise level and C0, C1 are some
absolute constants.
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Remarks

Interesting characterization for computational error and
statistical error;
Geometric convergence rate to the truth in the noiseless case
and minimax optimal statistical rate shown later;
The error bound is dominated by computation error in the first
several iterations and then is dominated by statistical error.
Useful guideline for choosing stopping rule.
We conjecture that n & s3/2 log p is the minimum requirement
of sample complexity in most tensor problems. This has an
essential difference with matrix case, where the optimal sample
complexity is O(s log p).
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Remarks

When t ≥ T for some enough T , the final estimator is bounded
by ∥∥∥T (T ) −T ∗

∥∥∥2

F
≤ Cσ2Ks log p

n
,

with high probability.
Minimax optimal rate!
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Class of Sparse and Low-rank tensor

Sparse CP decomposition

T =
K∑
k=1

βk ◦ βk ◦ βk, ‖βk‖0 ≤ s for k ∈ [K]

Incoherence condition(nearly orthogonal): The true tensor
components are incoherent such that

max
ki 6=kj∈[K]

|〈β∗ki
,β∗kj
〉| ≤ C√

s
.
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Minimax Lower Bound

Theorem
Consider the class of tensor satisfy sparse CP-decomposition and
incoherence condition. Suppose we sample via cubic measurements
with i.i.d. standard normal sketches with i.i.d. N(0, σ2) noise, then
we have the following lower bound result for recovery loss for this
class of low-rank tensors,

inf
T̂

sup
T ∈F

E
∥∥∥T̂ −T

∥∥∥2

F
≥ cσ2Ks log(ep/s)

n
.
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Optimal Estimation Rate

Theorem
Consider the class of tensor Fp,K,s satisfy sparse CP-decomposition
and incoherence condition. Suppose we observe n samples
{yi,Xi}ni=1 from symmetric tensor cubic sketching model, where
n ≥ Cs3/2 log p for some large constant C. Then the estimator T̂
achieves

inf
T̃

sup
T ∈Fp,K,s

E
∥∥∥T̃ −T

∥∥∥2

F
� σ2Ks log(p/s)

n︸ ︷︷ ︸
R∗

,

when log p � log p/s. Here σ is the noise level.

Botao Hao@Purdue sparse and low-rank tensor recovery



Remarks

Our analysis is non-asymptotic and our estimator is
rate-optimal.
In general, we have a trade-off → R∗ is the outcome of
statistical error and optimization error trade-off.
Similar argument holds for non-symmetric case. Different
technical tools are used.
To overcome the obstacle from high-order Gaussian random
variable, we develop novel high-order concentration inequality
by the combination of truncation argument and ψα-norm.
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Numerical Study
symmetric tensor, p = 50,K = 3, s = 0.3, replication = 200.
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