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Motivation

e Optimism principle (UCB or Thompson sampling) can be arbitrarily bad!
o  Why? Do not exploit the context structure properly.
o Do not optimize the trade-off between information and regret.
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e Some foundational questions have not been answered yet.
o How hard is the problem? Dependence of regret on problem structures?

o Lower bound...

Can we design better algorithms for contextual bandits?



Linear Contextual Bandit
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Remark

e Asymptotical constant C is sharp.

e The allocation rule depends on the problem structure (action set/true parameter).

e When the action set enjoys some good shapes, C could be zero (sub-logarithm
regret/bounded regret).

e The lower bound does not depend on the context distribution.
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“How to translate this resource
allocation rule to a bandit
algorithm? ”
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Convex Optimization Problem
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Matching Upper Bound!
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Remark

e If the distribution of contexts is well behaved, our algorithm acts mostly greedily
and enjoy sub-logarithmic regret. (adaptive to the good case)

e Asymptotically, the optimal constant is independent of the context distribution.
Designing algorithms that optimize for the asymptotic regret may make huge
sacrifices in finite-time!
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Experiments
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Limitations and Related Work

Current limitations

e Unclear if the algorithm is minimax optimal
e Need to solve an optimization problem each round

Published Work:

e The End of Optimism? An Asymptotic Analysis of Finite-Armed Linear Bandits
(Lattimore and Szepesvari, AISTAT 2016)

e Minimal Exploration in Structured Stochastic Bandits (Combes et al., NIPS 2017)

e Exploration in Structured Reinforcement Learning (Ok et al., NIPS 2018)






