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Stochastic Sparse Linear Bandits

e At each round t € [n], the agent chooses an action A; € A C RY
and receives a reward:

Y: = <At79*> + M.

where 7; is 1-sub-Gaussian noise. Assume for any a € A, ||alo <1
and |A| = K. The notion of sparsity can be defined through the
parameter space ©:
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Stochastic Sparse Linear Bandits

e At each round t € [n], the agent chooses an action A; € A C RY
and receives a reward:

Yt = <Ata 0*> -+ Mt

where 7; is 1-sub-Gaussian noise. Assume for any a € A, ||aloo <1
and |A| = K. The notion of sparsity can be defined through the
parameter space ©:

d
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e Data-poor regime: d 2 n; data-rich regime: d < n.
e Cumulative regret for bandit 6*:
n

Z<X*79*> - Z Yt
t=1

t=1

Ro«(n; ) =K

where x* is the optimal action.
e Worse-case regret: supy. Rg«(n; 7); Bayesian regret: Eg-[Rg-(n; 7)].



Does Sparsity Help?

e If the action set is arbitrary, there exists a Q(+/dsn) minimax lower
bound.

e |f the action set is exploratory, there exists a
Q(min(s'/3n?/3,v/dn)) minimax lower bound®.

e Carefully balancing the trade-off between information and regret is
necessary in sparse linear bandits.

IHigh-Dimensional Sparse Linear Bandits. NeurlPS 2020.



Does Sparsity Help?

e Those lower bounds are (nearly) sharp:
o O(s**n*/?) achieved by explore-then-commit?.
Optimal in data-poor regime but sub-optimal in data-rich regime.
e O(\/dsn) achieved by optimism-based algorithm?.
Optimal in data-rich regime but sub-optimal in data-poor regime.

Q: Can we have an algorithm that is optimal in both regimes?

2High-Dimensional Sparse Linear Bandits. NeurlPS 2020.
30nline-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits.

AISTATS 2012.



Our Contribution

e We prove that optimism-based algorithms fail to optimally address
the information-regret trade-off in sparse linear bandits, which
results in a sub-optimal regret bound.

e We provide the first analysis using information theory for sparse
linear bandits and derive a class of nearly optimal Bayesian regret
bounds for IDS that can adapt to information-regret structures.

e To approximate the information ratio, we develop an empirical
Bayesian approach for sparse posterior sampling using spike-and-slab
Gaussian-Laplace prior.



Optimism-Based Algorithms

Q: Does the optimism optimally balance information and regret?

In general, optimism-based algorithms 7°Pt choose

A: = argmax max(a, 0},
ac A 0eC:
where C; is some sparsity-aware confidence set that can be constructed
through online-to-confidence-set conversions.

Claim. Let 7°P* be such an optimism-based algorithm. There exists a
sparse linear bandit instance characterized by 6 such that for the
data-poor regime, we have

Ro(n; ™°PY) > n/(log(n)slog(ed/s)).



Exploratory Policy

Definition. Let P(.A) be the space of probability measures over 4. Then
we define

Cmin A) = min Ea~ AA—r .
(A) ) (AM[ D

Remarks.
e When Cuin(A) is a constant, we say

“action set A admits a well-conditioned exploratory policy”.

e What is information? Pulling arms according to this exploratory
policy, we collect information (well-conditioned data).



Information Directed Sampling

IDS (Russo and Van Roy (2014)) balances the information gain about
the optimal action and single-round regret:

e Assume 0* is from some sparse prior distribution.

o P;(-) = P(-|F;) as the posterior measure.
e Information gain /;(x*; Y;,): the mutual information between the
optimal action and the reward the agent receives for taking action a.
e Expected single-round regret A;(a) := E[(x*,0*) — (a, 0%)].
e IDS takes the action according to
T = argTIrnin V(m) = (Altt::)z



Bayesian Regret Bound

Theorem. For an arbitrary action set, the following regret bound holds
BR(n; ') < Vnds .

When A is exploratory and has sparse optimal actions, the following
regret bound holds

BR(n; 7'°°%) < min {\/@ sr72/3} .
Y ~ ’ (2Cmin(~’4))1/3
# Great adaptivity of IDS for sparse linear bandits in the sense that a
single policy adapts to different information-regret structures.

Table 1: Regret bounds of IDS for different regimes.

Arbitrary action set | Exploratory (data-rich) | Exploratory (data-poor)
Large K O(V'nds) O(V/nds) O(sn?/?)
Small K | O(y/nd log(K)) O(+/nd log(K)) 0(s*3n?310g'3(K))

# Bonus: efficient implementation is available through an empirical
Bayesian approach for sparse posterior sampling. 9



Bayesian Regret Bound for Sparse TS

Corollary. For an arbitrary action set, the following regret bound holds
for some absolute constant C > 0

BR(n; ") < \/ind min(log(K), 2s log(Cdn'/?/s)) .
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