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Stochastic Sparse Linear Bandits

• At each round t ∈ [n], the agent chooses an action At ∈ A ⊆ Rd

and receives a reward:

Yt = 〈At , θ
∗〉+ ηt .

where ηt is 1-sub-Gaussian noise. Assume for any a ∈ A, ‖a‖∞ ≤ 1

and |A| = K . The notion of sparsity can be defined through the

parameter space Θ:

Θ =

θ ∈ Rd

∣∣∣∣∣
d∑

j=1

1{θj 6= 0} ≤ s, ‖θ‖2 ≤ 1

 .
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• Data-poor regime: d & n; data-rich regime: d . n.

• Cumulative regret for bandit θ∗:

Rθ∗(n;π) = E

[
n∑

t=1

〈x∗, θ∗〉 −
n∑

t=1

Yt

]
,

where x∗ is the optimal action.

• Worse-case regret: supθ∗ Rθ∗(n;π); Bayesian regret: Eθ∗ [Rθ∗(n;π)].
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Does Sparsity Help?

• If the action set is arbitrary, there exists a Ω(
√
dsn) minimax lower

bound.

• If the action set is exploratory, there exists a

Ω(min(s1/3n2/3,
√
dn)) minimax lower bound1.

• Carefully balancing the trade-off between information and regret is

necessary in sparse linear bandits.

1High-Dimensional Sparse Linear Bandits. NeurIPS 2020.
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Does Sparsity Help?

• Those lower bounds are (nearly) sharp:

• Õ(s2/3n2/3) achieved by explore-then-commit2.

Optimal in data-poor regime but sub-optimal in data-rich regime.

• Õ(
√
dsn) achieved by optimism-based algorithm3.

Optimal in data-rich regime but sub-optimal in data-poor regime.

Q: Can we have an algorithm that is optimal in both regimes?

2High-Dimensional Sparse Linear Bandits. NeurIPS 2020.
3Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits.

AISTATS 2012.
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Our Contribution

• We prove that optimism-based algorithms fail to optimally address

the information-regret trade-off in sparse linear bandits, which

results in a sub-optimal regret bound.

• We provide the first analysis using information theory for sparse

linear bandits and derive a class of nearly optimal Bayesian regret

bounds for IDS that can adapt to information-regret structures.

• To approximate the information ratio, we develop an empirical

Bayesian approach for sparse posterior sampling using spike-and-slab

Gaussian-Laplace prior.
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Optimism-Based Algorithms

Q: Does the optimism optimally balance information and regret?

In general, optimism-based algorithms πopt choose

At = argmax
a∈A

max
θ̃∈Ct
〈a, θ̃〉,

where Ct is some sparsity-aware confidence set that can be constructed

through online-to-confidence-set conversions.

Claim. Let πopt be such an optimism-based algorithm. There exists a

sparse linear bandit instance characterized by θ such that for the

data-poor regime, we have

Rθ(n;πopt) & n/(log(n)s log(ed/s)) .
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Exploratory Policy

Definition. Let P(A) be the space of probability measures over A. Then

we define

Cmin(A) = sup
µ∈P(A)

σmin

(
EA∼µ

[
AA>

])
.

Remarks.

• When Cmin(A) is a constant, we say

“action set A admits a well-conditioned exploratory policy”.

• What is information? Pulling arms according to this exploratory

policy, we collect information (well-conditioned data).
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Information Directed Sampling

IDS (Russo and Van Roy (2014)) balances the information gain about

the optimal action and single-round regret:

• Assume θ∗ is from some sparse prior distribution.

• Pt(·) = P(·|Ft) as the posterior measure.

• Information gain It(x
∗;Yt,a): the mutual information between the

optimal action and the reward the agent receives for taking action a.

• Expected single-round regret ∆t(a) := Et [〈x∗, θ∗〉 − 〈a, θ∗〉].
• IDS takes the action according to

πt = argmin
π

Ψt(π) =
(∆>t π)2

I>t π
.
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Bayesian Regret Bound

Theorem. For an arbitrary action set, the following regret bound holds

BR(n;πIDS) .
√
nds .

When A is exploratory and has sparse optimal actions, the following

regret bound holds

BR(n;πIDS) . min

{√
nds,

sn2/3

(2Cmin(A))1/3

}
.

# Great adaptivity of IDS for sparse linear bandits in the sense that a

single policy adapts to different information-regret structures.

Table 1: Regret bounds of IDS for different regimes.

Arbitrary action set Exploratory (data-rich) Exploratory (data-poor)

Large K O(
√
nds) O(

√
nds) O(sn2/3)

Small K O(
√
nd log(K )) O(

√
nd log(K )) O(s2/3n2/3 log1/3(K ))

# Bonus: efficient implementation is available through an empirical

Bayesian approach for sparse posterior sampling. 9



Bayesian Regret Bound for Sparse TS

Corollary. For an arbitrary action set, the following regret bound holds

for some absolute constant C > 0

BR(n;πTS) ≤
√

1

2
nd min(log(K ), 2s log(Cdn1/2/s)) .

10



11


