

Contribution

- Online sparse RL in the **high-dimensional regime**.
- Linear regret unavoidable even there exists a policy that collects well-conditioned data.
- With an oracle access to a policy that collects well-conditioned data, a sub-linear **regret** is possible.

HD Statistics v.s. Sparse Bandits v.s. Sparse RL

• High-Dimensional Statistics.

"Best of both worlds": high representation power with many features while sparsity leads to efficient estimation.

• Sparse Linear Bandits.

Existence of an exploratory policy \Rightarrow dimension-free $\Theta(n^{2/3})$ regret bound (Hao et al. NeurIPS 2020).

• Online Sparse RL. Even though there exists an exploratory policy, finding the exploratory policy is also hard!

Problem Setting

- Episodic Markov decision process: $\mathcal{M} = (\mathcal{X}, \mathcal{A}, H, P, r)$ with \mathcal{X} the statespace, \mathcal{A} the action space, H the episode length, $P: \mathcal{X} \times \mathcal{A} \to \Delta_{\mathcal{X}}$ the transition kernel and $r: \mathcal{X} \times \mathcal{A} \rightarrow [0, 1]$ the reward function.
- Value function:

$$V_h^{\pi}(x) := \mathbb{E}^{\pi} \left[\sum_{h'=h}^H r(x_{h'}, a_{h'}) \right] |x_h = x \right] .$$

• Cumulative regret:

$$R_N = \sum_{n=1}^N \left(V_1^*(x_1^n) - V_1^{\pi_n}(x_1^n) \right) \,.$$

The high-dimensional regime is referred to $N \leq d$.

• Sparse linear MDP: Fix a feature map $\phi : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$ and assume the episodic MDP \mathcal{M} is linear in ϕ . We say \mathcal{M} is (s, ϕ) -sparse if there exists an active set $\mathcal{K} \subseteq [d]$ with $|\mathcal{K}| \leq s$ and some functions $\psi(\cdot) = (\psi_k(\cdot))_{k \in \mathcal{K}}$ such that for all pairs of (x, a): $P(x'|x,a) = \sum_{k \in \mathcal{K}} \phi_k(x,a) \psi_k(x') \, .$

Online Sparse Reinforcement Learning

Botao Hao, Tor Lattimore, Csaba Szepesvári, Mengdi Wang

Hardness Of Online Sparse RL

Definition (Exploratory policy). Let Σ^{π} be the expected uncentered covariance matrix induced by policy π and feature map ϕ , given by

$$\Sigma^{\pi} := \mathbb{E}^{\pi} \left[\frac{1}{H} \sum_{h=1}^{H} \phi(x_h, a_h) \phi(x_h, a_h)^{\top} \right]$$

where $x_1 \sim \xi_0, a_h \sim \pi(\cdot | x_h), x_{h+1} \sim P(\cdot | x_h, a_h)$. We call a policy π exploratory if $\sigma_{\min}(\Sigma^{\pi}) > 0.$

Theorem (Minimax Lower Bound). For any algorithm π , there exists a sparse **linear MDP** \mathcal{M} and associated exploratory policy π_e for which $\sigma_{\min}(\Sigma^{\pi_e})$ is a strictly positive universal constant independent of N and d, such that for any $N \leq d$,

 $R_N \geq \frac{1}{128} Hd.$

Remark.

- Even if the MDP transition kernel can be exactly represented by a sparse linear model and there exists an exploratory policy, the learner could still suffer linear regret in the high-dimensional regime.
- This is in stark contrast to linear bandits, where the existence of an exploratory policy is sufficient for dimension-free regret. The problem in RL is that **finding** the exploratory policy can be very hard.

Hard-to-learn MDP Instance

- The intuition is to construct an **informative state** with only one of a large set of actions leading to the informative state **deterministically**.
- The exploratory policy has to visit that informative state to produce well-conditioned data. In order to find this informative state, the learner should take a large number of trials that will suffer high regret.

Figure 2: A hard-to-learn MDP instance that includes an informative state and an uninformative state.

Assume an oracle access to the exploratory policy. The algorithm uses the explorethen-commit template:

- policy π_e .
- Lasso:

$$\hat{w}_h = \operatorname*{argmin}_{w} \frac{1}{|\mathcal{D}|} \sum_{(x_i, a_i, x'_i)} (x_i)$$

policy with respect to the estimated Q-value $\{Q_{\hat{w}_{h}}\}_{h=1}^{H}$.

Theorem (regret bound of online lasso-FQI). The cumulative regret of online Lasso-FQI satisfies $R_N \leq H^{\frac{1}{3}} s^{\frac{1}{3}} N^{\frac{1}{3}}$. Remark.

- Without oracle access \Rightarrow linear regret lower bound.
- With oracle access \Rightarrow sublinear regret upper bound.

• **Summary.** We emphasize that in high-dimensional regime, exploiting the sparsity to reduce the regret needs an exploratory policy but finding the exploratory policy is as hard as solving the MDP itself - an irresolvable "chicken and egg" problem. Find exploratory policy

Online Lasso-FQI

• **Exploration phase.** The exploration phase includes N_1 episodes where N_1 will be chosen later based on regret bound and can be factorized as $N_1 = RH$, where R > 1is an integer. At the beginning of each episode, the agent follows the exploratory

• Learning phase. Based on the exploratory dataset \mathcal{D} , the agent executes an extension of FQI combining with Lasso for feature selection. To define the algorithm, it is useful to introduce $Q_w(x,a) = \phi(x,a)^\top w$. At each step $h \in [H]$, we fit \hat{w}_h through

 $(\max_{a \in \mathcal{A}} Q_{\hat{w}_{h+1}}(x'_i, a) - \phi(x_i, a_i)^\top w)^2 + \lambda_1 \|w\|_1.$

• **Exploitation phase.** For the rest $N - N_1$ episodes, the agent commits to the greedy

Conclusion