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Contribution

e Online sparse RL in the high-dimensional regime.

e Linear regret unavoidable even there exists a policy that collects well-conditioned
data.

e \With an oracle access to a policy that collects well-conditioned data, a sub-linear
regret is possible.

HD Statistics v.s. Sparse Bandits v.s. Sparse RL

e High-Dimensional Statistics.

“Best of both worlds”: high representation power with many features while sparsity
leads to efficient estimation.

e Sparse Linear Bandits.

Existence of an exploratory policy = dimension-free ©(n??) regret bound (Hao et
al. NeurlPS 2020).

¢ Online Sparse RL.

Even though there exists an exploratory policy, finding the exploratory policy is also

hard!

Problem Setting

e Episodic Markov decision process: M = (X, A, H, P,r) with X the state-
space, A the action space, H the episode length, P : X x A — Ay the transition
kernel and r : X x A — |0, 1] the reward function.

e VValue function:

Vi(z) =E" | Y rlaw,ap))|o, = o

e Cumulative regret:

Ry = (V7(a}) - Vi(ay)

The high-dimensional regime is referred to NV < d.

e Sparse linear MDP: Fix a feature map ¢ : X x A — R? and assume the episodic
MDP M is linear in ¢. We say M is (s, ¢)-sparse if there exists an active set K C [d]
with [IC| < s and some functions ©(-) = (¢¥(-))kex such that for all pairs of (x,a):

P(@'|z,a) = ex o, a)ibp(2')
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Hardness Of Online Sparse RL

Definition (Exploratory policy). Let X" be the expected uncentered covariance
matrix induced by policy ™ and feature map ¢, given by
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where x1 ~ &, ap, ~ 7(-|zp), v ~ P(-|xn, ap). We call a policy m exploratory if
O'mm(zﬂ) > ().

Theorem (Minimax Lower Bound). For any algorithm 7, there exists a sparse
linear MDP M and associated exploratory policy 7. for which o,,;,(327) is a strictly
positive universal constant independent of NV and d, such that for any N < d,
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Remark.

e Even if the MDP transition kernel can be exactly represented by a sparse linear model
and there exists an exploratory policy, the learner could still suffer linear regret in the
high-dimensional regime.

e This is in stark contrast to linear bandits, where the existence of an exploratory pol-
icy is sufficient for dimension-free regret. The problem in RL is that finding the
exploratory policy can be very hard.

Hard-to-learn MDP Instance

e T he intuition is to construct an informative state with only one of a large set of
actions leading to the informative state deterministically.

e T he exploratory policy has to visit that informative state to produce well-conditioned
data. In order to find this informative state, the learner should take a large number
of trials that will suffer high regret.
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Figure 2: A hard-to-learn MDP instance that includes an informative state and an uninformative state.
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Online Lasso-FQI

Assume an oracle access to the exploratory policy. The algorithm uses the explore-
then-commit template:

e Exploration phase. The exploration phase includes /N episodes where Ny will be
chosen later based on regret bound and can be factorized as Ny = RH, where R > 1
is an integer. At the beginning of each episode, the agent follows the exploratory
policy ..

e Learning phase. Based on the exploratory dataset D, the agent executes an exten-
sion of FQI combining with Lasso for feature selection. To define the algorithm, it is
useful to introduce Q(z,a) = ¢(x,a) w. At each step h € [H], we fit w0, through
Lasso:
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e Exploitation phase. For the rest NV — [NV episodes, the agent commits to the greedy
policy with respect to the estimated Q-value {Qg, }4 ;.

Theorem (regret bound of online lasso-FQI). The cumulative regret of online
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Lasso-FQI satisfies Ry < H3s3N3.
Remark.

e Without oracle access = linear regret lower bound.

e With oracle access = sublinear regret upper bound.
Conclusion

e Summary. We emphasize that in high-dimensional regime, exploiting the sparsity
to reduce the regret needs an exploratory policy but finding the exploratory policy
is as hard as solving the MDP itself - an irresolvable “chicken and egg”’ problem.
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