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Contribution

• Online sparse RL in the high-dimensional regime.

• Linear regret unavoidable even there exists a policy that collects well-conditioned
data.

• With an oracle access to a policy that collects well-conditioned data, a sub-linear
regret is possible.

HD Statistics v.s. Sparse Bandits v.s. Sparse RL

• High-Dimensional Statistics.

“Best of both worlds”: high representation power with many features while sparsity
leads to efficient estimation.

• Sparse Linear Bandits.

Existence of an exploratory policy⇒ dimension-free Θ(n2/3) regret bound (Hao et
al. NeurIPS 2020).

• Online Sparse RL.

Even though there exists an exploratory policy, finding the exploratory policy is also
hard!

Problem Setting

• Episodic Markov decision process: M = (X ,A, H, P, r) with X the state-
space, A the action space, H the episode length, P : X × A → ∆X the transition
kernel and r : X ×A → [0, 1] the reward function.

• Value function:

V π
h (x) := Eπ

[
H∑
h′=h

r(xh′, ah′))

∣∣∣∣xh = x

]
.

• Cumulative regret:

RN =

N∑
n=1

(V ∗1 (xn1)− V πn
1 (xn1)) .

The high-dimensional regime is referred to N ≤ d.

• Sparse linear MDP: Fix a feature map φ : X ×A → Rd and assume the episodic
MDPM is linear in φ. We sayM is (s, φ)-sparse if there exists an active set K ⊆ [d]
with |K| ≤ s and some functions ψ(·) = (ψk(·))k∈K such that for all pairs of (x, a):
P (x′|x, a) =

∑
k∈K φk(x, a)ψk(x

′) .

Hardness Of Online Sparse RL

Definition (Exploratory policy). Let Σπ be the expected uncentered covariance
matrix induced by policy π and feature map φ, given by

Σπ := Eπ
[

1

H

H∑
h=1

φ(xh, ah)φ(xh, ah)
>

]
,

where x1 ∼ ξ0, ah ∼ π(·|xh), xh+1 ∼ P (·|xh, ah). We call a policy π exploratory if
σmin(Σπ) > 0.
Theorem (Minimax Lower Bound). For any algorithm π, there exists a sparse
linear MDP M and associated exploratory policy πe for which σmin(Σπe) is a strictly
positive universal constant independent of N and d, such that for any N ≤ d,

RN ≥
1

128
Hd .

Remark.

• Even if the MDP transition kernel can be exactly represented by a sparse linear model
and there exists an exploratory policy, the learner could still suffer linear regret in the
high-dimensional regime.

• This is in stark contrast to linear bandits, where the existence of an exploratory pol-
icy is sufficient for dimension-free regret. The problem in RL is that finding the
exploratory policy can be very hard.

Hard-to-learn MDP Instance

• The intuition is to construct an informative state with only one of a large set of
actions leading to the informative state deterministically.

• The exploratory policy has to visit that informative state to produce well-conditioned
data. In order to find this informative state, the learner should take a large number
of trials that will suffer high regret.

Figure 2: A hard-to-learn MDP instance that includes an informative state and an uninformative state.

Online Lasso-FQI

Assume an oracle access to the exploratory policy. The algorithm uses the explore-
then-commit template:

• Exploration phase. The exploration phase includes N1 episodes where N1 will be
chosen later based on regret bound and can be factorized as N1 = RH, where R > 1
is an integer. At the beginning of each episode, the agent follows the exploratory
policy πe.

• Learning phase. Based on the exploratory dataset D, the agent executes an exten-
sion of FQI combining with Lasso for feature selection. To define the algorithm, it is
useful to introduce Qw(x, a) = φ(x, a)>w. At each step h ∈ [H ], we fit ŵh through
Lasso:

ŵh = argmin
w

1

|D|
∑

(xi,ai,x′i)

(max
a∈A

Qŵh+1
(x′i, a)− φ(xi, ai)

>w)2 + λ1‖w‖1 .

• Exploitation phase. For the rest N−N1 episodes, the agent commits to the greedy
policy with respect to the estimated Q-value {Qŵh}Hh=1.

Theorem (regret bound of online lasso-FQI). The cumulative regret of online

Lasso-FQI satisfies RN . H
4
3s

2
3N

2
3 .

Remark.

• Without oracle access ⇒ linear regret lower bound.

• With oracle access ⇒ sublinear regret upper bound.

Conclusion

• Summary. We emphasize that in high-dimensional regime, exploiting the sparsity
to reduce the regret needs an exploratory policy but finding the exploratory policy
is as hard as solving the MDP itself - an irresolvable “chicken and egg” problem.


